10.3.12
Apa Itu BUS ?
Bus merupakan jalur penghubung antar alat pada komputer yang digunakan sebagai media dalam proses melewatkan data pada suatu proses. Bus ini bisa dianggap sebagai sebuah pipa, dimana pipa atau saluran tersebut digunakan untuk mengirimkan dan menerima informasi antar alat yang dihubungkannya. Pada sistem komputer, bus ini termasuk perangkat internal, kecepatan pengiriman informasi melalui bus ini dilakukan dengan kecepatan tinggi.
Alat transformasi data dari terminal satu ke terminal lain di dalam CPU. Jalur utama aliran data antara processor ke komponen lainnya (seperti sound card, video card, memory) pada mainboard.
Karakteristik bus adalah:
1. Jumlah interupsi mementukan banyak perangkat independen yang melakukan I/O.
2. Ukuran bus data eksternal berakibat pada kecepatan operasional I/O.
3. Ukuran bus alamat menentukan banyak memori yang ditunjuk board ekspansi.
4. Kecepatan clock maksimum yang dapat diakomodasi bus berakibat pada kinerja.
Interkoneksi antar komponen. Bus ini terdiri dari:
1. Bus alamat (address bus),
Pengalamanatan tranformasi data (bus). Pengalamatan bus ini berisi 16, 20, 24 jalur sinyal paralel atau lebih. CPU mengirim alamat lokasi memori atau port yang ingi ditulis atau dibaca di bus ini.
Jumlah lokasi memori yang dapat dialamati ditentukan jumlah jalur alamat. Jika CPU mempunyai N jalur alamat, maka dapat mengalamati 2 pangkat N lokasi memori dan atau port secara langsung.
Saat CPU membaca atau menulis data mengenai port, alamat port dikirim di bus alamat
2. Bus data (data bus),
Bus data adalah Jalur yang berfungsi untuk menyalurkan data dari suatu bagian ke bagian lainnya. Berisi 8, 16, 32 jalur sinyal paralel atau lebih. Jalur-jalur data adalah dua arah (bidirectional). CPU dapat membaca dan mengirim data dari/ke memori atau port.
Banyak perangkat pada sistem yang dicantolkan ke bus data tapi hanya satu perangkat pada satu saat yang dapat memakainya. Untuk mengatur ini, perangkat harus mempunyai tiga state (tristate) agar dapat dipasang pada bus data.
3. Bus kendali (control bus).
Bus kontrol adalah salah satu dari tiga macam bus yang terdapat pada sistem mikroprosesor yang digunakan untuk menyalurkan sinyal kontrol.
Bus kendali berisi 4-10 jalur sinyal paralel. CPU mengirim sinyal-sinyal pada bus kendali untuk memerintahkan memory atau port.
Sinyal bus kendali antara lain:
- memory read,
- Memory write,
- I/O read,
- I/O write
Satu bentuk tataletak jaringan yang menggunakan satu buah kabel dimana seluruh node jaringan disambungkan. Dikenal juga dengan topologi bus.
System bus atau bus system adalah bus yang digunakan oleh sistem komputer agar dapat berjalan. Sebuah bus adalah sebutan untuk jalur di mana data dapat mengalir dalam komputer. Jalur-jalur ini digunakan untuk komunikasi dan dapat dibuat antara dua elemen atau lebih.
Sebuah komputer memiliki beberapa bus, agar dapat berjalan. Banyaknya bus yang terdapat dalam sistem, tergantung dari arsitektur sistem komputer yang digunakan. Sebagai contoh, sebuah komputer PC dengan prosesor umumnya Intel Pentium 4 memiliki bus prosesor (Front-Side Bus), bus AGP, bus PCI, bus USB, bus ISA (yang digunakan oleh keyboard dan mouse), dan bus-bus lainnya.
Bus disusun secara hierarkis, karena setiap bus yang memiliki kecepatan rendah akan dihubungkan dengan bus yang memiliki kecepatan tinggi. Setiap perangkat di dalam sistem juga dihubungkan ke salah satu bus yang ada. Sebagai contoh, kartu grafis AGP akan dihubungkan ke bus AGP. Beberapa perangkat lainnya (utamanya chipset atau kontrolir) akan bertindak sebagai jembatan antara bus-bus yang berbeda. Sebagai contoh, sebuah kontrolir bus SCSI dapat mengubah sebuah bus menjadi bus SCSI, baik itu bus PCI atau bus PCI Express.
Struktur bus pada PC
Bus pada arsitektur PC Modern
Beberapa bus utama dalam sistem komputer modern adalah sebagai berikut:
Bus prosesor
Bus ini merupakan bus tercepat dalam sistem dan menjadi bus inti dalam chipset dan motherboard. Bus ini utamanya digunakan oleh prosesor untuk meneruskan informasi dari prosesor ke cache atau memori utama ke chipset kontrolir memori (Northbridge, MCH, atau SPP). Bus ini juga terbagi atas beberapa macam, yakni Front-Side Bus, HyperTransport bus, dan beberapa bus lainnya. Sistem komputer selain Intel x86 mungkin memiliki bus-nya sendiri-sendiri. Bus ini berjalan pada kecepatan 100 MHz, 133 MHz, 200 MHz, 266 MHz, 400 MHz, 533 MHz, 800 MHz, 1000 MHz atau 1066 MHz. Umumnya, bus ini memiliki lebar lajur 64-bit, sehingga setiap detaknya ia mampu mentransfer 8 byte.
Bus AGP (Accelerated Graphic Port)
Bus AGP adalah sebuah bus yang dikhususkan sebagai bus pendukung kartu grafis berkinerja tinggi, menggantikan bus ISA, bus VESA atau bus PCI yang sebelumnya digunakan.
Spesifikasi AGP pertama kali (1.0) dibuat oleh Intel dalam seri chipset Intel 440 pada Juli tahun 1996. Sebenarnya AGP dibuat berdasarkan bus PCI, tapi memiliki beberapa kemampuan yang lebih baik. Selain itu, secara fisik, logis dan secara elektronik, AGP bersifat independen dari PCI. Tidak seperti bus PCI yang dalam sebuah sistem bisa terdapat beberapa slot, dalam sebuah sistem, hanya boleh terdapat satu buah slot AGP saja.
Spesifikasi AGP 1.0 bekerja dengan kecepatan 66 MHz (AGP 1x) atau 133 MHz (AGP 2x), 32-bit, dan menggunakan pensinyalan 3.3 Volt. AGP versi 2.0 dirilis pada Mei 1998 menambahkan kecepatan hingga 266 MHz (AGP 4x), serta tegangan yang lebih rendah, 1.5 Volt. Versi terakhir dari AGP adalah AGP 3.0 yang umumnya disebut sebagai AGP 8x yang dirilis pada November 2000. Spesifikasi ini mendefinisikan kecepatan hingga 533 MHz sehingga mengizinkan throughput teoritis hingga 2133 Megabyte/detik (dua kali lebih tinggi dibandingkan dengan AGP 4x). Meskipun demikian, pada kenyataannya kinerja yang ditunjukkan oleh AGP 8x tidak benar-benar dua kali lebih tinggi dibandingkan AGP 4x, karena beberapa alasan teknis.
Selain empat spesifikasi AGP di atas, ada lagi spesifikasi AGP yang dinamakan dengan AGP Pro. Versi 1.0 dari AGP Pro diperkenalkan pada bulan Agustus 1998 lalu direvisi dengan versi 1.1a pada bulan April 1999. AGP Pro memiliki slot yang lebih panjang dibandingkan dengan slot AGP biasa, dengan tambahan pada daya yang dapat didukungnya, yakni hingga 110 Watt, lebih besar 25 Watt dari AGP biasa yang hanya 85 Watt. Jika dilihat dari daya yang dapat disuplainya, terlihat dengan jelas bahwa AGP Pro dapat digunakan untuk mendukung kartu grafis berkinerja tinggi yang ditujukan untuk workstation graphics, semacam ATi FireGL atau NVIDIA Quadro. Meskipun demikian, AGP Pro tidaklah kompatibel dengan AGP biasa: kartu grafis AGP 4x biasa memang dapat dimasukkan ke dalam slot AGP Pro, tapi tidak sebaliknya. Selain itu, karena slot AGP Pro lebih panjang, kartu grafis AGP 1x atau AGP 2x dapat tidak benar-benar masuk ke dalam slot sehingga dapat merusaknya. Untuk menghindari kerusakan akibat hal ini, banyak vendor motherboard menambahkan retensi pada bagian akhir slot tersebut: Jika hendak menggunakan kartu grafis AGP Pro lepas retensi tersebut.
Selain faktor kinerja video yang lebih baik, alasan mengapa Intel mendesain AGP adalah untuk mengizinkan kartu grafis dapat mengakses memori fisik secara langsung, yang dapat meningkatkan kinerja secara signifikan, dengan biaya integrasi yang relatif lebih rendah. AGP mengizinkan penggunaan kartu grafis yang langsung mengakses RAM sistem, sehingga kartu grafis on-board dapat langsung menggunakan memori fisik, tanpa harus menambah chip memori lagi, meski harus dibarengi dengan berkurangnya memori untuk sistem operasi.
Mulai tahun 2006, AGP telah mulai digeser oleh kartu grafis berbasis PCI Express x16, yang dapat mentransfer data hingga 4000 Mbyte/detik, yang hampir dua kali lebih cepat dibandingkan dengan AGP 8x, dengan kebutuhan daya yang lebih sedikit (voltase hanya 800 mV saja.)
Bus PCI (Peripherals Component Interconnect)
Bus ini berjalan pada kecepatan 33 MHz dengan lebar lajur 32-bit. Bus ini ditemukan pada hampir semua komputer PC yang beredar, dari mulai prosesor Intel 486 karena memang banyak kartu yang menggunakan bus ini, bahkan hingga saat ini. Bus ini dikontrol oleh chipset pengatur memori (northbridge, Intel MCH) atau Southbridge (Intel ICH, atau NVIDIA nForce MCP).
Bus PCI didesain untuk menangani beberapa perangkat keras. Standar bus PCI ini dikembangkan oleh konsorsium PCI Special Interest Group yang dibentuk oleh Intel Corporation dan beberapa perusahaan lainnya, pada tahun 1992. Tujuan dibentuknya bus ini adalah untuk menggantikan Bus ISA/EISA yang sebelumnya digunakan dalam komputer IBM PC atau kompatibelnya.
Komputer lama menggunakan slot ISA, yang merupakan bus yang lamban. Sejak kemunculan-nya sekitar tahun 1992, bus PCI masih digunakan sampai sekarang, hingga keluar versi terbarunya yaitu PCI Express (add-on).
Spesifikasi bus PCI pertama kali dirilis pada bulan Juni 1992, sebagai PCI vesi 1.0. Perkembangan selanjutnya dapat dilihat pada tabel berikut.
Spesifikasi
Spesifikasi bus PCI | Dirilis pada | Perubahan yang dilakukan |
PCI 1.0 | Juni 1992 | Spesifikasi asli PCI, yang memiliki lebar bus 32-bit atau 64-bit |
PCI 2.0 | April 1993 | Spesifikasi ini mendefinisikan jenis konektor dan papan ekspansi |
PCI 2.1 | Juni 1995 | Operasi 66 MHz diberlakukan; Perubahan pada latency; Adanya fungsi transaction ordering |
PCI 2.2 | Januari 1999 | Fitur manajemen daya diberlakukan; Ada beberapa klarifikasi mekanika |
PCI-X 1.0 | September 1999 | Spesifikasi PCI-X 133 MHz, sebagai tambahan bagi versi PCI 2.2 |
Mini-PCI | November 1999 | Spesifikasi PCI 2.2 untuk motherboard dengan form factor yang kecil (Micro-ATX) |
PCI 2.3 | Maret 2002 | Pensinyalan 3.3 Volt; Penggunaan kartu yang bersifat low-profile |
PCI-X 2.0 | Juli 2002 | Modus kerja 266 MHz dan 533 MHz; dukungan terhadap pembagian bus 64-bit menjadi segmen-segmen berukuran 16-bit atau 32-bit; Pensinyalan 3.3 Volt atau 1.5 Volt. |
PCI Express 1.0 | Juli 2002 | PCI dengan cara transmisi serial, dengan kecepatan 2500Mb/s tiap jalur transmisi tiap arah, menggunakan pensinyalan 0.8 Volt, sehingga menghasilkan bandwidth kira-kira 250MB/s tiap jalurnya; Didesain untuk menggantikan PCI 2.x dalam sistem PC. |
Bus PCI Express (Peripherals Component Interconnect Express)
Bus PCI Express (PCI-E /PCIex) adalah slot ekspansi module didesain untuk menggantikan PCI bus yang lama, sekarang banyak Motherboard mengadopsi PCI express dikarenakan PCI Express memiliki transfer data yang lebih cepat, terutama untuk keperluan grafis 3D. Slot ini memiliki kecepatan 1x, 2x, 4x, 8x, 16x and 32x, tidak seperti PCI biasa dengan sistim komunikasi paralel. PCI Express menggunakan sistem serial dan mampu berkomunikasi 2 kali ( tulis/baca) dalam satu rute clock.
Ini adalah kecepatan lebar data maximun dari PCI
Kecepatan Max
PCI-ex 1x 250 MB/s
PCI-ex 2x 500 MB/s
PCI-ex 4x 1000 MB/s
PCI-ex 8x 2000 MB/s
PCI-ex 16x 4000 MB/s
PCI-ex 32x 8000 MB/s
Dalam perjalanan pengembangannya PCI Express(PCIe) sebelumnya dinamai HSI ( High Speed InterConnect) dan mengalami pergantian nama menjadi 3GIO ( 3rd Generation I/O). Akhirnya PCI SIG (PCI Special Interest Group) menamainya menjadi PCI Express.
PCIe masih dalam pengembangan yang berkelanjutan. versi sekarang yang banyak beredar adalah PCIe 1.0, PCI-SIG sudah mengumumkan beredarnya PCIe 2.0 (January,2007) dan PCIe 3.0 (Augustus,2007)
Bus PCI-X (Peripherals Component Interconnect Express)
Bus ISA (Industry Standard Architecture)
Bus ISA adalah sebuah arsitektur bus dengan bus data selebar 8-bit yang diperkenalkan dalam IBM PC 5150 pada tanggal 12 Agustus 1981. Bus ISA diperbarui dengan menambahkan bus data selebar menjadi 16-bit pada IBM PC/AT pada tahun 1984, sehingga jenis bus ISA yang beredar pun terbagi menjadi dua bagian, yakni ISA 16-bit dan ISA 8-bit. ISA merupakan bus dasar dan paling umum digunakan dalam komputer IBM PC hingga tahun 1995, sebelum akhirnya digantikan oleh bus PCI yang diluncurkan pada tahun 1992.
a. ISA 8-bit
Bus ISA 8-bit merupakan varian dari bus ISA, dengan bus data selebar 8-bit, yang digunakan dalam IBM PC 5150 (model PC awal). Bus ini telah ditinggalkan pada sistem-sistem modern ke atas tapi sistem-sistem Intel 286/386 masih memilikinya. Kecepatan bus ini adalah 4.77 MHz (sama seperti halnya prosesor Intel 8088 dalam IBM PC), sebelum ditingkatkan menjadi 8.33 MHz pada IBM PC/AT. Karena memiliki bandwidth 8-bit, maka transfer rate maksimum yang dimilikinya hanyalah 4.77 Mbyte/detik atau 8.33 Mbyte/detik. Meskipun memiliki transfer rate yang lamban, bus ini termasuk mencukupi kebutuhan saat itu, karena bus-bus I/O semacam serial port, parallel port, kontrolir floppy disk, kontrolir keyboard dan lainnya sangat lambat. Slot ini memiliki 62 konektor.
Meski desainnya sederhana, IBM tidak langsung mempublikasikan spesifikasinya saat diluncurkan tahun 1981, tapi harus menunggu hingga tahun 1987, sehingga para manufaktur perangkat pendukung agak kerepotan membuat perangkat berbasis ISA 8-bit.
b. ISA 16-bit
Bus ISA 16-bit adalah sebuah bus ISA yang memiliki bandwidth 16-bit, sehingga mengizinkan transfer rate dua kali lebih cepat dibandingkan dengan ISA 8-bit pada kecepatan yang sama. Bus ini diperkenalkan pada tahun 1984, ketika IBM merilis IBM PC/AT dengan mikroprosesor Intel 80286 di dalamnya. Mengapa IBM meningkatkan ISA menjadi 16 bit adalah karena Intel 80286 memiliki bus data yang memiliki lebar 16-bit, sehingga komunikasi antara prosesor, memori, dan motherboard harus dilakukan dalam ordinal 16-bit. Meski prosesor ini dapat diinstalasikan di atas motherboard yang memiliki bus I/O dengan bandwidth 8-bit, hal ini dapat menyababkan terjadinya bottleneck pada bus sistem yang bersangkutan.
Daripada membuat bus I/O yang baru, IBM ternyata hanya merombak sedikit saja dari desain ISA 8-bit yang lama, yakni dengan menambahkan konektor ekstensi 16-bit (yang menambahkan 36 konektor, sehingga menjadi 98 konektor), yang pertama kali diluncurkan pada Agustus tahun 1984, tahun yang sama saat IBM PC/AT diluncurkan. Ini juga menjadi sebab mengapa ISA 16-bit disebut sebagai AT-bus. Hal ini memang membuat interferensi dengan beberapa kartu ISA 8-bit, sehingga IBM pun meninggalkan desain ini, ke sebuah desain di mana dua slot tersebut digabung menjadi satu slot.
Bus EISA (Extended Industry Standard Architecute)
Bus EISA adalah sebuah bus I/O yang diperkenalkan pada September 1988 sebagai respons dari peluncuran bus MCA oleh IBM, mengingat IBM hendak "memonopoli" bus MCA dengan mengharuskan pihak lain membayar royalti untuk mendapatkan lisensi MCA. Standar ini dikembangkan oleh beberapa vendor IBM PC Compatible, selain IBM, meskipun yang banyak menyumbang adalah Compaq Computer Corporation. Compaq jugalah yang membentuk EISA Committee, sebuah organisasi nonprofit yang didesain secara spesifik untuk mengatur pengembangan bus EISA. Selain Compaq, ada beberapa perusahaan lain yang mengembangkan EISA yang jika diurutkan, maka kumpulan perusahaan dapat disebut sebagai WATCHZONE:
• Wyse
• AT&T
• Tandy Corporation
• Compaq Computer Corporation
• Hewlett-Packard
• Zenith
• Olivetti
• NEC
• Epson
Meski menawarkan pengembangan yang signifikan jika dibandingkan dengan ISA 16-bit, hanya beberapa kartu berbasis EISA yang beredar di pasaran (atau yang dikembangkan). Itu pun hanya berupa kartu pengontrol larik hard disk (SCSI/RAID), dan kartu jaringan server.
Bus EISA pada dasarnya adalah versi 32-bit dari bus ISA yang biasa. Tidak seperti MCA dari IBM yang benar-benar baru (arsitektur serta desain slotnya), pengguna masih dapat menggunakan kartu ISA 8-bit atau 16-bit yang lama ke dalam slot EISA, sehingga hal ini memiliki nilai tambah: kompatibilitas ke belakang (backward compatibility). Seperti halnya bus MCA, EISA juga mengizinkan konfigurasi kartu EISA secara otomatis dengan menggunakan perangkat lunak, sehingga bisa dibilang EISA dan MCA adalah pelopor "plug-and-play", meski masih primitif.
Bus EISA menambahkan 90 konektor baru (55 konektor digunakan untuk sinyal sedangkan 35 sisanya digunakan sebagai ground) tanpa membuat slot ISA 16-bit berubah. Sekilas, slot EISA 32-bit sangat mirip dengan slot ISA 16-bit. Tapi, berbeda dari kartu ISA yang hanya memiliki satu baris kontak, kartu EISA memiliki dua baris kontak yang bertumpuk. Baris pertama adalah baris yang digunakan oleh ISA 16-bit, sementara baris kedua menambahkan bandwidth menjadi 32-bit. Karenanya, kartu ISA yang lama masih dapat bertahan meskipun berganti motherboard. Meski kompatibilitas ini merupakan sesuatu yang bagus, ternyata industri kurang begitu meresponsnya. Akhirnya, fitur-fitur EISA pun ditangguhkan untuk mengembangkan bus I/O yang baru, yang disebut dengan VESA Local Bus (VL-Bus).
Bus EISA dapat menangani data hingga 32 bit pada kecepatan 8,33 MHz, sehingga transfer rate maksimum yang dapat dicapainya adalah 33 MByte/detik. Timing (latency) EISA juga berpengaruh pada kecepatan transfer data pada kartu EISA. Ukuran dimensi fisik slotnya (panjang, lebar, tinggi) adalah 333,5 milimeter, 12,7 milimeter, 127 milimeter.
Bus MCA (Micro Channel Architecture)
Bus MCA adalah sebuah bus I/O ber-bandwidth 32-bit yang digunakan dalam beberapa komputer mikro. Bus ini dibuat oleh IBM yang ditujukan untuk menggantikan bus ISA 8-bit/16-bit yang lambat, selain tentunya untuk menghadapi masalah bottleneck yang terjadi akibat kecepatan prosesor yang semakin tinggi tapi tidak diimbangi dengan kecepatan bus I/O. Komputer yang menggunakan bus ini pun hanya sedikit, mengingat memang IBM mewajibkan para vendor untuk membayar royalti kepada iBM untuk mendapatkan lisensi bus MCA. Karena hal ini banyak vendor yang kurang setuju dengan IBM membuat "partai oposisi", dengan membuat bus EISA.
Kebutuhan terhadap sebuah bus I/O yang lebih cepat datang akibat bus ISA mengalami bottleneck. Prosesor Intel 80386DX merupakan prosesor 32-bit yang dapat mentransfer data hingga 32 bit dalam satu waktunya, tapi ISA hanya dapat mentransfer 16 bit saja. Daripada menambahkan pin lagi terhadap bus ISA, IBM memutuskan untuk membuat sebuah bus baru, yang kemudian menjadi bus MCA. Berbeda dengan EISA yang mendukung konsep backward compatibility, bus ini adalah benar-benar baru, yang sama sekali tidak kompatibel dengan ISA 8-bit/16-bit.
Sistem MCA juga menawarkan perubahan lainnya: pengguna dapat menancapkan kartu MCA ke dalam slotnya tanpa harus mengubah-ubah setting jumper untuk menentukan sumber daya yang hendak digunakan (IRQ Channel, DMA Channel, atau memory base address). Fitur ini mirip dengan apa yang kita kenal sekarang sebagai fitur plug-and-play, meski masih terkesan primitif. Karenanya, kartu MCA tidak memiliki jumper atau DIP Switch untuk mengatur sumber daya, tapi menawarkan perangkat lunak yang dapat mengaturnya. Umumnya, MCA memiliki dua jenis disket untuk konfigurasi perangkat keras: Option Disk dan Reference Disk. Reference Disk merupakan disket yang datang sistem komputer yang mengintegrasikan bus MCA, sementara Option Disk datang dengan kartu MCA yang bersangkutan. Setelah kartu dipasang, pengguna tinggal menginstalasikan berkas-berkas dari Option disk ke dalam Reference Disk, setelah itu kartu pun akan berjalan. Reference Disk mengandung beberapa program dan BIOS yang dibutuhkan untuk mengatur sistem MCA, dan sistem tidak dapat dikonfigurasikan tanpanya.
MCA berjalan dalam kecelatan 5 MHz, pada bandwidth 32-bit, sehingga dapat mentransfer data hingga 20 MByte/detik. Selain versi 32-bit biasa, IBM juga membuat beberapa variasi bus MCA, yakni sebagai berikut.
Nama Bus Kecepatan Bandwidth Transfer rate
MCA-16 5 MHz 16 bit 10 MByte/detik
MCA-32 5 MHz 32 bit 20 MByte/detik
MCA-16 Streaming 10 MHz 16 bit 20 MByte/detik
MCA-32 Streaming 10 MHz 32 bit 40 MByte/detik
MCA-64 Streaming 10 MHz/20 MHz 64 bit 80 MByte/detik / 160 MByte/detik
Bus SCSI (Small Computer System Interface)
Bus SCSI adalah sebuah antarmuka bus berkinerja tinggi yang didefinisikan oleh panitia ANSI X3T9.2 (American National Standarts Institute).
Antarmuka ini digunakan untuk menangani perangkat input / output atau perangkat media penyimpanan. Perangkat yang umum menggunakan SCSI adalah hard disk, CD-ROM, scanner atau printer
OPERASI BUS
Bila sebuah modul akan mengirimkan data ke modul lainnya, maka modul itu harus melakukan dua hal : 1. memperoleh enggunaan bus, dan 2 memindahkan data melalui bus. Bila sebuah modul akan meminta data dari modul lainnya, maka modul itu harus 1 memperoleh penggunaan bus, dan 2 memindahkan sebuah request ke modul lainya melalui saluran kontrol dan saluran alamt yang sesuai. Kemudian modul harus menunggu modul kedua untuk mengirimkan data.
Bentuk phisik Bus.
Bus system merupakan sejumlah konduktor listrik parallel. Konduktor-konduktor ini berupa kawat logam yang berakhir pada kartu atau papan PCB. Bus melintasi seluruh komponen system yang masing-masing disambungkan ke beberapa atau semua saluran bus.
Masalah dalam Bus Tunggal/ Single
Bila perangkat yang berjumlah sangat banyak dihubungkan ke bus, maka akan terjadi penurunan kinerja. Penyebab utama :
Bus system merupakan sejumlah konduktor listrik parallel. Konduktor-konduktor ini berupa kawat logam yang berakhir pada kartu atau papan PCB. Bus melintasi seluruh komponen system yang masing-masing disambungkan ke beberapa atau semua saluran bus.
Masalah dalam Bus Tunggal/ Single
Bila perangkat yang berjumlah sangat banyak dihubungkan ke bus, maka akan terjadi penurunan kinerja. Penyebab utama :
Semakin banyak perangkat yang dihubungkan ke bus, semakin besar delay propagasinya. Delay ini menentukan waktu yang diperlukan perangkat untuk mengkoordinasi pengguna bus
Bus akan menjadi penyumbat dengan semakin besarnya perindahan data yang hamper mendekati kapasitas bus. Sampai tingkat tertentu, masalah ini dapat diatasi dengan memakai bus-bus yang lebih lebar. (misalnya meningkatkan bus data dari 32 menjadi 64 bit) Namun karena kelajuan data disebabkan oleh perangkat-perangkat yang terhubung (misalnya pengontrol grafis dan video, interface jaringan) berkembang dengan cepatm maka dalam perlombaan ini besar kemungkinan bus tunggal akan menderita kekalahan.
Bus local yang menghubungkan prosesor dengan cache memory dan bus local dapat mendukung sebuah perangkat local atau lebih. Pengontrol cache memory tidak hanya menghubungkan cache dengan bus local itu saja, namun juga dengan bus system yang terhubung dengan seluruh modul memory utama. Manfaat struktur cache melindungi prosesor dari keharusan seringnya mengakses memori utama, sehingga memori utama dapat dipindahkan dari bus local ke bus sitem. Dengan cara ini, transfer I/O ke memori utama dan transfer dari memoriutama yang melintasi bus system tidak mengganggu aktivitas prosesor.
Sangat mungkin untuk menghubungkan pengontrol I/O secara langsung dengan bus system. Penyelesaian yang lebih efisien untuk masalah ini adalah dengan memanfaatkan satu bus ekspansi atau lebih. Interface bus ekspansi mem-buffer-kan transfer data antara bus system dengan pengontrol I/O pada bus ekspansi.
Contoh : Perangkat I/O yang dapat disambungkan ke bus ekspansi. Koneksi jaringan meliputi LAN misalnya koneksi Ethernet 10 Mbps dan koneksi ke WAN seperti jaringan paket switching, SCSI (Small Computer System Interface) merupakan jenis bus yang digunakan untuk mendukung disk drive local dan peripheral lainnya. Sebuah serial port dapat dipakai untuk mendukung sebuah printer atau scanner.
Arsitektur bus tradisional cukup efisien namun mulai mengalami penurunan dengan semakin tingginya kinerja pada perangkat I/O.
Untuk menjawab meningkatnya kebutuhan ini, penyelesaianya membuat bus berkecepatan tinggi yang sangat terintegrasi dengan system, yang hanya memerlukan bridge antara bus prosesor dengan bus berkecepatan tinggi.
Keuntungan pengaturan bus berkecepatan tinggi menyebabkan perangkat yang berkapasitas besar menjadi lebih terintegrasi dengan prosesor dan sekaligus tidak tergantung lagi terhadap prosesor.
Jenis-jenis Bus
Dedicated : Saluran data dan alamat terpisah
Multiplexed : Alamat dan informasi data dapat ditransmisikan melalui sejumlah saluran yang sama dengan menggunakan saluran ?Address Valid Control?. Pada awal pemindahan data, alamat ditempatkan pada bus dan ?Address Valid Control? diaktifkan. Pada saat ini setiap modul memiliki periode waktu tertentu untuk menalin alamt dan menentukan apakah alamat tersebut merupakan modul beralamat. Kemudian alamat dihapus dari bus, dan koneksi bus yang sam adigunakan untuk transfer data pembacaan atau penulisan berikutnya. Metoda penggunaan saluran yang untuk berbagai keperlua ini dikenal sebagai time multiplexing
Multiplexed : Alamat dan informasi data dapat ditransmisikan melalui sejumlah saluran yang sama dengan menggunakan saluran ?Address Valid Control?. Pada awal pemindahan data, alamat ditempatkan pada bus dan ?Address Valid Control? diaktifkan. Pada saat ini setiap modul memiliki periode waktu tertentu untuk menalin alamt dan menentukan apakah alamat tersebut merupakan modul beralamat. Kemudian alamat dihapus dari bus, dan koneksi bus yang sam adigunakan untuk transfer data pembacaan atau penulisan berikutnya. Metoda penggunaan saluran yang untuk berbagai keperlua ini dikenal sebagai time multiplexing
Keuntungan : hanya memerlukan saluran sedikit sehingga menghemat ruang dan biaya
Kerugiannya : diperlukan rangkain yang lebih kompleks , penurunan kinerja yang cukup besar
Bus Arbitrasi :
Didalam semua system kecuali system yang paling sederhana, lebih dari satu modul diperlukan untuk mengontrol bus. Misalnya I/O mungkin diperlukan untuk membaca atau menulis secara langsung ke memori, dengan tanpa mengirimkan data ke CPU. Karena pada satu sat hanya sebuah unit yang berhasil mentransmisikan data melalui bus, maka diperlukan beberapa metode arbitrasi.
Didalam semua system kecuali system yang paling sederhana, lebih dari satu modul diperlukan untuk mengontrol bus. Misalnya I/O mungkin diperlukan untuk membaca atau menulis secara langsung ke memori, dengan tanpa mengirimkan data ke CPU. Karena pada satu sat hanya sebuah unit yang berhasil mentransmisikan data melalui bus, maka diperlukan beberapa metode arbitrasi.
Metode Arbitrasi digolongkan sebagai metode tersentralisasi dan metode terdistribusi.
Tersentralisasi : sebuah perangkat hardware yang dikenal sebagai pengontrol bus atau arbitrer bertanggung jawab atas alokasi waktu pada bus. Mungkin perangkat berbentuk modul atau bagian CPU yang terpisah
Terdistribusi : tidak terdapat pengontrol sentral, setiap modul terdiri dari acces control logic dan modul-modul bekerja sama untuk memakai bus bersama-sama
Timing
Timing berkaitan dengan cara terjadiya event dikoordinasikan pada bus. Dengan timing yang synchronous, terjadinya event pada bus ditentukan oleh sebuah clock. Bus meliputi sebuah saluran, waktu tempat timing mentransmisikan rangkaian bilangan 1 dan 0 dalam durasi yang sama. Sebuah transmisi 1-0 dikenal sebagai siklus waktu atau siklus bus dan menentukan besarnya slot waktu. Semua perangkat lainnya pada bus dapat membaca saluran waktu, dan semua event dimulai pada awal siklus waktu.
Timing Sinkron
Timing berkaitan dengan cara terjadiya event dikoordinasikan pada bus. Dengan timing yang synchronous, terjadinya event pada bus ditentukan oleh sebuah clock. Bus meliputi sebuah saluran, waktu tempat timing mentransmisikan rangkaian bilangan 1 dan 0 dalam durasi yang sama. Sebuah transmisi 1-0 dikenal sebagai siklus waktu atau siklus bus dan menentukan besarnya slot waktu. Semua perangkat lainnya pada bus dapat membaca saluran waktu, dan semua event dimulai pada awal siklus waktu.
Timing Sinkron
Signal bus lainya dapat berubah pada ujung muka signal waktu (dengan sedikit reaksi delay). Sebagian besar event mengisi suatu siklus waktu. CPU mengeluarkan signal baca dan menempatkan alamat memori pada bus alamat, CPU mengeluarkan signal awal untuk menandai keberadaan alamat dan informasi control pada bus. Modul memori mengetahui alamat itu, dan setelah delay 1 siklus menempatkan data dan signal balasan pada bus.
Timing Asinkron
Timing Asinkron
Terjadinya event pada bus mengikuti dan tergantung pada event sebelumnya. CPU menempatkan alamat dan membaca signal bus. Setelah berhenti untuk memberi kesempatan signal ini menjadi stabil, CPU mengeluarkan signal MSYN (master syn) yang menandakan keberadaan alamat yang valid dan signal control. Modul memori memberikan respons dengan data dan signal SSYN (slave syn) yang menunjukan respon
Timing sinkron lebih mudah untuk diimplementasikan dan ditest. Namun timing ini kurang flexible dibandingkan dengan timing asinkron. Karena semua perangkat pada bus sinkron terkait dengan kelajuan pewaktu yang tetap, maka system tidak dapat memanfaatkan peningkatan kinerja. Dengan menggunakan timing asinkron, campuran antara perangkat yang lamban dan cepat, baik dengan menggunakan teknologi lama maupun baru, dapat menggunakan bus secara bersama-sama.
Lebar Bus
Lebar bus dapat mempengaruhi kinerja system, semakin lebar bus data, semakin besar bit yang dapat ditransferkan pada suatu saat. Lebar bus alamat mempunyai pengaruh pada kapasitas system : semakin lebar bus alamat, semakin besar range lokasi yang dapat direferensi.
Lebar Bus
Lebar bus dapat mempengaruhi kinerja system, semakin lebar bus data, semakin besar bit yang dapat ditransferkan pada suatu saat. Lebar bus alamat mempunyai pengaruh pada kapasitas system : semakin lebar bus alamat, semakin besar range lokasi yang dapat direferensi.
PCI
Pheripheral Component Interconnect (PCI) merupakan bus yang tidak tergantung prosessor berbandwidth tinggi yang dapat berfungsi sebagai bus peripheral atau bus mezzanine. PCI memberikan system yang lebih baik bagi subsistem I/O berkecepatan tinggi.. PCI dirancang untuk mendukung bermacam-macam konfigurasi berbasis microprocessor, baik system microprocessor tunggal maupun jamak. PCI memanfaatkan timing sinkron dan pola arbitrasi tersentralisasi..
PCI Saluran Bus.
PCI Saluran Bus.
Signal-signal ini dibagi menjadi kelompok-kelompok :
System pins: meliputi pin waktu dan reset
Address dan data : meliputi 32 saluran yang time multiplexed bagi alamat dan data. Saluran lainya untuk menginterpretasi dan mevalidasi saluran-saluran signal yang membawa alamat dan data
Interface Control: Mengontrol timing transaksi dan mengkoordinasikan antara inisiator dan target
Arbitration: Masing-masing master PCI memiliki pasangan saluran arbitrasinya sendiri yang menghubungkannya secara langsung dengan arbiter bus PCI
Error repots : Melaporkan error parity dan eror lainnya.
PCI saluran bus
Interupt pins : Saluran signal ini disediakan bagi perangkat-perangkat PCI yang harus menghasilkan request untuk layanan. Pin-pin ini pun bukan saluran yang dapat dipakai bersama, melainkan masing-masing PCI memilih saluran interrupt ke pengontrol interrupt
Cache Support : Diperlukan untuk mendukung memori pada PCI yang dapat di cache kan di dalam prosesor
64 bit Bus Extension : Meliputi 32 saluran yang merupakan time-multiplexed bagi alamat dan data dan dikombinasikan dengan saluran alamat/data untuk membentuk bus alamat/data 64 bit. Saluran lainnya di dalam kelompok ini digunakan untuk menginterpretasi dan memvalidasi saluran-saluran signal yang membawa alamat dan data. Terakhir terdapat dua saluran yang memungkinkan dua buah perangkat PCI untuk menyetujui penggunaan kemampuan 64 bit
JTAG/Boundary Scan : Saluran signal untuk pengujian prosedur-prosedur yang ditentukan dalam standard 149.1.IEEE.
Operasi Baca PCI
Sekali master bus telah memperoleh control bus, maka master bus akan memulai transaksi dengan menegaskan FRAME. Saluran ini akan tetap ditegaskan sampai inisiator siap untuk menyelesaikan fase data yang terakhir. Inisiator juga menaruh alamat awal pada bus alamat, dan membaca perintah pada saluran C/BE
Pada awal waktu ke-2, perangkat target akan mengetahui alamatnya di saluran AD
Inisiator berhenti mengendalikan bus AD. Siklus balik (yang ditandai oleh dua buah panah sikular) diperlukan pada semua saluran signal yang akan dikendalikan oleh lebih dari sebuah perangkat, sehingga penurunan signal alamat akan mempersiapkan bus untuk dipakai oleh perangkat target. Inisiator mengubah informasi pada saluran C/BE untuk memilih saluran AD yang akan digunakan untuk melakukan transfer data beralamat (dari 1 hingga 4 bit). Inisiator juga menegaskan IRDY untuk menandakan bahwa dirinya siap untuk butir data pertama.
Target yang terpilih menunjuk DEVSEL untuk menunjukkan bahwa target telah mengetahui alamatnya dan akan memberikan respon. Target yang terpilih menempatkan data yang diminta pada saluran AD dan menegaskan TRDY untuk mengindikasikan bahwa data yang valid terdapat pada bus
Inisiator membaca data pada awal waktu ke-4 dan mengubah salurah enable byte begitu diperlukan dalam persiapan pembacaan berikutnya
Dalam contoh ini, target membutuhkan beberapa saat untuk mempersiapkan blok kedua untuk transmisi. Karena itu target melepaskan TRDY untuk memberi signal kepada inisiator bahwa tidak akan terdapat data baru selama siklus berikutnya. Kemudian inisiator tidak akan membaca saluran data pada awal siklus waktu ke-5 dan tidak mengubah byte enable selama siklus itu. Blok data dibaca pada awal waktu ke-6.
Selama waktu ke-6, target menempatkan butir data ketiga pada bus. Namun dalam contoh ini, inisiator belum siap untuk membaca butir data (misalnya inisiator mempunyai kondisi penuh buffer sementara). Karena itu inisiator melepaskan IRDY. Hal ini akan menyebabkan target untuk menyediakan butir data ketiga pada bus siklus waktu tambahan
Inisiator mengetahui bahwa transfer data ketiga adalah terakhir, karena itu inisiator melepaskan FRAME untuk memberikan signal bahwa dirinya siap untuk menyelesaikan transfer tersebut.
Inisiator melepaskan IRDY, yang mengembalikan bus ke keadaan idle, dan target melepaskan TRDY dan DEVSEL
Arbitrasi PCI antara 2 master
Arbitrasi PCI antara 2 master
Pada saat titik sebelum awal waktu ke-1, A telah menegaskan signal REQ-nya. Arbiter men-sample signal ini pada awal siklus waktu ke-1
Selama siklus waktu ke-1, B membuat request untuk menggunakan bus dengan menegaskan signal REQ-nya
Pada saat yang sama, arbiter menegaskan GNT-A untuk memberikan hak akses bus kepada A
Master bus A men-sample GNT-A pada awal waktu ke-2 dan memeriksa apakah dirinya telah diberi hak mengakses bus. Master bus juga menemukan pelepasaran IRDY dan TRDY yang menandakan bahwa bus tersebut dalam keadaan idle. Setelah itu, master bus menegaskan FRAME dan menempatkan informasi alamat pada bus alamat dan perintah pada bus C/BE (tidak ditunjukkan). Master bus juga melanjutkan penegasan REQ-A, karena master bus memiliki transaksi kedua yang akan dibentuk setelah transaksi ini
Arbiter bus men-sample semua saluran GNT pada awal waktu ke 3 dan membuat keputusan arbitrasi untuk memberikan hak mengakses bus ke B pada transaksi berikutnya. Kemudian arbiter bus menegaskan GNT-B dan melepaskan GNT-A. B tidak akan dapat menggunakan bus hingga bus itu dikembalikan ke keadaan idle.
A melepaskan FRAME untuk menandakan bahwa transfer data terakhir (dan satu-satunya) sedang dilakukan. A menaruh data pada bus data dan memberi signal ke target dengan IRDY. Target membaca data pada awal siklus waktu berikutnya
Pada awal waktu ke-5 menemukan IRDY dan FRAME yang dilepaskan dank arena itu B dapat melakukan control terhadap bus dengan menegaskan FRAME. B juga melepaskn saluran REQ-nya karena B hanya perlu membentuk satu transaksi saja.
Jenis Data
Memori :
Memori umumnya terdiri atas N word memori dengan panjang yang sama. Masing–masing word diberi alamat numerik yang unik (0, 1, 2, …N-1). Word dapat dibaca maupun ditulis pada memori dengan kontrol Read dan Write. Lokasi bagi operasi dispesifikasikan oleh sebuah alamat.
Modul I/O :
Operasi modul I/O adalah pertukaran data dari dan ke dalam komputer. Berdasakan pandangan internal, modul I/O dipandang sebagai sebuah memori dengan operasi pembacaan dan penulisan. Seperti telah dijelaskan pada bab 6 bahwa modul I/O dapat mengontrol lebih dari sebuah perangkat peripheral. Modul I/O juga dapat mengirimkan sinyal interrupt.
CPU :
CPU berfungsi sebagai pusat pengolahan dan eksekusi data berdasarkan routine–routine program yang diberikan padanya. CPU mengendalikan seluruh sistem komputer sehingga sebagai konsekuensinya memiliki koneksi ke seluruh modul yang menjadi bagian sistem komputer.
Gambar 1. Modul Komputer
Dari jenis pertukaran data yang diperlukan modul–modul komputer, maka struktur interkoneksi harus mendukung perpindahan data.
- Memori ke CPU : CPU melakukan pembacaan data maupun instruksi dari memori.
- CPU ke Memori : CPU melakukan penyimpanan atau penulisan data ke memori.
- I/O ke CPU : CPU membaca data dari peripheral melalui modul I/O.
- CPU ke I/O : CPU mengirimkan data ke perangkat peripheral melalui modul I/O.
- I/O ke Memori atau dari Memori : digunakan pada sistem DMA
Sampai saat ini terjadi perkembangan struktur interkoneksi, namun yang banyak digunakan saat ini adalah sistem bus.
Sistem bus
- Digunakan secara tunggal
- Digunakan secara jamak,
Hal ini Tergantung karakteristik sistemnya
Interkoneksi Bus – Struktur Bus
Sebuah bus biasanya terdiri atas beberapa saluran. Sebagai contoh bus data terdiri atas 8 saluran sehingga dalam satu waktu dapat mentransfer data 8 bit. Secara umum fungsi saluran busdikatagorikan dalam tiga bagian, yaitu :
- Saluran data
- Saluran alamat
- Saluran kontrol
Gambar 2. Pola Interkoneksi
Saluran Data
Lintasan bagi perpindahan data antar modul. Secara kolektif lintasan ini disebut bus data. Umumnya jumlah saluran terkait dengan panjang word, misalnya 8, 16, 32 saluran.
Tujuan : agar mentransfer word dalam sekali waktu.
Jumlah saluran dalam bus data dikatakan lebar bus, dengan satuan bit, misal lebar bus 16 bit
Saluran Alamat (Address Bus)
- Digunakan untuk menspesifikasi sumber dan tujuan data pada bus data.
- Digunakan untuk mengirim alamat word pada memori yang akan diakses CPU.
- Digunakan untuk saluran alamat perangkat modul komputer saat CPU mengakses suatu modul.
- Semua peralatan yang terhubung dengan sistem komputer, agar dapat diakses harus memiliki alamat.
Contoh : mengakses port I/O, maka port I/O harus memiliki alamat hardware-nya
Saluran kontrol (Control Bus)
Digunakan untuk mengontrol bus data, bus alamat dan seluruh modul yang ada.
Karena bus data dan bus alamat digunakan oleh semua komponen maka diperlukan suatu mekanisme kerja yang dikontrol melalui bus kontrol ini.
Sinyal – sinyal kontrol terdiri atas
- Sinyal pewaktuan adalah Sinyal pewaktuan menandakan validitas data dan alamat
- Sinyal–sinyal perintah adalah Sinyal perintah berfungsi membentuk suatu operasi
Prinsip Operasi Bus
- Meminta penggunaan bus.
- Apabila telah disetujui, modul akan memindahkan data yang diinginkan ke modul yang dituju
Hierarki Multiple Bus
Bila terlalu banyak modul atau perangkat dihubungkan pada bus maka akan terjadi penurunan kinerja
Faktor – faktor :
- Semakin besar delay propagasi untuk mengkoordinasikan penggunaan bus.
- Antrian penggunaan bus semakin panjang.
- Dimungkinkan habisnya kapasitas transfer bus sehingga memperlambat data.
Gambar 3. Arsitektur bus jamak tradisional
Arsitektur bus jamak
Prosesor, cache memori dan memori utama terletak pada bus tersendiri pada level tertinggi karena modul – modul tersebut memiliki karakteristik pertukaran data yang tinggi.
Pada arsitektur berkinerja tinggi, modul – modul I/O diklasifikasikan menjadi dua,
- Memerlukan transfer data berkecepatan tinggi
- Memerlukan transfer data berkecepatan rendah.
Modul dengan transfer data berkecepatan tinggi disambungkan dengan bus berkecepatan tinggi pula,
Modul yang tidak memerlukan transfer data cepat disambungkan pada bus ekspansi
Gambar 4. Arsitektur bus jamak kinerja tinggi
Keuntungan hierarki bus jamak kinerja tinggi
- Bus berkecepatan tinggi lebih terintegrasi dengan prosesor.
- Perubahan pada arsitektur prosesor tidak begitu mempengaruhi kinerja bus
Referensi :
http://www.docstoc.com/docs/6600957/Bus-System
Sekian postingan kali ini
terimakasih telah mengunjungi >>>ta-tang.blogspot.com<<<
Sekian postingan kali ini
terimakasih telah mengunjungi >>>ta-tang.blogspot.com<<<
Labels:
Tugas Dasar Komputer
0 comments:
Posting Komentar